Use the following values for constants.

Acceleration due to gravity on Earth	g	$10.00 \text{ m} \cdot \text{s}^{-2}$
Boltzmann constant	k_B	$1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$
Current Mass of the Sun	M_s	$2.00 \times 10^{30} \text{ kg}$
Current Radius of the Sun	R_s	$7.00 \times 10^8 \text{ m}$
Magnitude of the electron charge	e	$1.60 \times 10^{-19} \text{ C}$
Mass of the electron	m_e	$9.11 \times 10^{-31} \text{ kg}$
Mass of the proton	m_p	$1.67 \times 10^{-27} \text{ kg}$
Atomic Mass Unit	u	$931.50 \text{ MeV}/c^2$
Permeability of free space	μ_0	$1.26 \times 10^{-6} \text{ H} \cdot \text{m}^{-1}$
Permittivity of free space	ϵ_0	$8.85 \times 10^{-12} \text{ F} \cdot \text{m}^{-1}$
Planck's constant	h	$6.63 \times 10^{-34} \text{ J} \cdot \text{s}$
Avogadro Constant	N_A	$6.02 \times 10^{23} \text{ mol}^{-1}$
Speed of light in vacuum	С	$3.00 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$
Universal Gas constant	R	$8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
Universal Gravitational constant	G	$6.67 \times 10^{-11} \text{ kg}^{-1} \cdot \text{m}^3 \cdot \text{s}^{-2}$
Wien's constant	b	$2.90 \times 10^{-3} \text{ m} \cdot \text{K}$
π	\approx	3.14
$\ln 2$	\approx	0.69
$\ln 3$	\approx	1.10
$\ln 10$	\approx	2.30
Base of the Napierian logarithm e	\approx	2.72

SET B

- The first 12 questions are multiple choice questions with only one answer correct. The candidate gets 2.5 marks for a correct answer and -1 for an incorrect answer.
- Questions 13 17 are multiple choice questions and more than one answer might be correct. The candidate gets 4 marks for selecting **all** the correct answers. There is no negative marking.

1. An arrow is released from a rigid bow at time t = 0. The magnitude of the tension (T) in the bowstring as a function of time is best desribed by

2. Two air bubbles of equal initial volume rise from the bottom of a lake to the surface. One bubble ascends and expands adiabatically while the other bubble ascends and expands isothermally. Let V_A and V_T be the final volumes of the bubbles with adiabatic and isothermal expansions, respectively. Consider an ideal gas behaviour and note that γ is the adiabatic constant. Then,

A.
$$V_A > V_T$$

B. $V_A < V_T$
C. $V_A = V_T$
D. $V_A = \gamma V_T$

3. A current I flows through a regular hexagonal loop of side length l. The magnitude of the magnetic field at the centre is

A.
$$\frac{\mu_0 I}{3\pi l}$$

B.
$$\frac{\mu_0 I}{2\sqrt{3}\pi l}$$

C.
$$\frac{\sqrt{3}\mu_0 I}{\pi l}$$

D.
$$\frac{3\mu_0 I}{\pi l}$$

- 4. A planet of mass m is orbiting around a non-rotating star of mass αm ($\alpha \gg 1$) with an orbital radius r. The star ejects mass λm ($\lambda \ll 1$) radially outwards in a spherically symmetric fashion. Neglecting any impact of ejected mass on the planet, the radius of new circular orbit of the planet is
 - A. $(1 + \frac{\lambda}{\alpha})^{-1}r$ B. $(1 - \lambda\alpha)^{-1}r$ C. $(1 + \lambda\alpha)r$ D. $(1 - \frac{\lambda}{\alpha})^{-1}r$

5. The equivalent capacitance between P and Q for the infinite series of capacitors shown in the figure is

- 6. The temperature and pressure at the summit of Mt. Everest is -30° C and 0.27×10^{5} N.m⁻², respectively. The corresponding values at sea-level are 27°C and 1×10^{5} N.m⁻². Considering air to be an ideal gas, the ratio between the molecular number density at the summit of Mt. Everest to that at sea level is closest to
 - A. 1:30
 - B. 81:100
 - C. 27:100
 - D. 1:3

7. Consider the following four cylindrical tubes (P,Q,R,S) all of equal radii. The tubes Q and R are of length l. The tubes P and S are of length 1.5l. If the fundamental frequencies are ν_P, ν_Q, ν_R and ν_S , respectively, then the correct option is

A. $\nu_R > \nu_S > \nu_P > \nu_Q$ **B.** $\nu_R > \nu_S > \nu_Q > \nu_P$ C. $\nu_S > \nu_R > \nu_Q > \nu_P$ D. $\nu_R > \nu_P > \nu_S > \nu_Q$ 8. A transparent glass slab of thickness t = 0.50 cm is placed with its face AB on a horizontal table. A hemispherical water drop of radius R = 0.33 cm condenses on the glass slab as shown in figure. The refractive indices of the slab and the water drop are respectively 1.50 and 1.33. The image of the object at O on the face AB is viewed after refraction from the drop. Taking OEQ as the optical axis, the distance (cm) of the image from the point Q is

- A. 1.40B. 0.60C. 0.72
- D. 2.00

9. A beam of monochromatic light is incident on one face of a prism of angle 75°. If the angle of incidence is 60° and the refractive index of the prism is $\sqrt{3}$, then the correct option about the emergence of the beam from the opposite face is

A. no emergence.

- B. grazing emergence.
- C. emergence with an angle of 60° from the normal.
- D. emergence with an angle of 30° from the normal.

- 10. In an isobaric process involving an ideal gas the mean distance between the molecules is quadrupled (four times). Then, the ratio of final to initial sound speeds is
 - A. 1
 - B. 2
 - C. 8
 - D. 4

- 11. Two radioactive samples X and Y have the same number of atoms initially $[N_X(t=0) = N_Y(t=0)]$. The half life $\tau_{1/2}^x$ of X is half the mean life of Y. Then the ratio $N_Y(t)/N_X(t)$ when $t = \tau_{1/2}^x$ is close to
 - A. 0.8
 - B. 1.0
 - C. 1.2
 - D. 1.4

- 12. Consider the Bohr model of the hydrogen atom. Suppose that the charge of the proton were 1.1e while the electron charge continued to be -e but the masses for both remained unchanged. Then, the angular frequency of revolution ω_B of the electron would have
 - A. remain unchanged.
 - B. change to $\sqrt{1.1}\omega_B$.
 - C. change to 1.1 ω_B .
 - **D.** change to 1.21 ω_B .

The following questions may have more than one correct answer. Please select all the correct answers.

13. A heavy disc of radius R and mass M is placed horizontally. A small coin of mass m placed at a radial distance R/2 from the centre. The disc is now (t = 0) given a constant angular acceleration of magnitude α rad \cdot s⁻² about a vertical axis passing through its centre. If μ_s and μ_d are the coefficients of static and dynamic friction, respectively, between the coin and the rotating disc, then

A. at t > 0, the force due to static friction acts radially inwards.

B. at t > 0, the magnitude of force due to static friction is always $F_s = \mu_s mg$.

C. the coin starts sliding at time
$$t = \frac{1}{\alpha} \sqrt{\frac{2\mu_s g}{R}}$$
.

D. the coin reaches the edge of the disc at time $t = \frac{2}{\alpha} \sqrt{\frac{(\mu_d - \mu_s)g}{R}}$.

14. An electromagnetic wave, travelling in vacuum, is represented by $\vec{E} = E_0 \cos(kz - wt)\hat{y}$ where E_0 is the amplitude of the electric field. A square loop of side a ($a \ll 2\pi/k$) is placed in its path. Then, the correct option(s) is (are)

A.
$$\vec{B} = B_0 \cos(kz - wt)\hat{x}$$
 where $B_0 = -E_0/c$

- B. The wave is travelling in the y-direction.
- C. The induced emf is zero if the loop lies in the xz plane.
- D. The induced emf is finite if the loop lies in the yz plane.

15. Consider the experimental set-up shown in the figure to observe the interference pattern. Note that the prism angle θ is close to π . The correct option(s) regarding this experiment is (are)

A. fringe width will increase with increasing angle θ .

- B. fringe width will decrease with the refractive index of the lens.
- C. fringe width will increase if the glass slab is lifted along y direction.
- D. fringes will alternate between dark and bright if glass slab is lifted along y direction.

- 16. A current I is passing flowing through a thin copper slab placed on a diamond slab. The bottom surface of the diamond slab is maintained at 0° C and the remaining arrangment is thermally insulated from the surroundings. Note that diamond is an excellent thermal conductor but a poor electrical conductor. Then, the correct option(s) is(are)
 - A. the steady-state temperature of the copper slab is directly proportional to the thickness of the diamond slab.
 - B. the steady-state temperature of the copper slab depends upon the specific heat of the copper.
 - C. if the current is supplied from a constant voltage source, the steady-state temperature of the copper slab will double when the its thickness is doubled.
 - D. if the current is held constant, the steady-state temperature of the copper slab will be halved if its thickness is doubled.

17. The pair(s) with same dimensions is(are)

- A. Pressure and Young's modulus
- B. Power and energy flux
- C. Gravitational potential and latent heat
- D. Rotational impulse and Planck's constant