1. Let f be the function on \mathbb{R} defined by $f(x)=x^{3}-3 x^{2}+a x-1$, where $a \in \mathbb{R}$. Then the set of all possible values of a for which f is strictly increasing is
(a) $[3, \infty)$
(b) $(-\infty, 3]$
(c) $[-3,0]$
(d) $[0,3]$
2. If $\frac{1}{(1+i)^{2023}}=t e^{i \theta}$, where $t \in \mathbb{R}$ and $0 \leq \theta<2 \pi$, then the value of θ is
(a) $\frac{\pi}{4}$
(b) $\frac{3 \pi}{4}$
(c) $\frac{5 \pi}{4}$
(d) $\frac{7 \pi}{4}$
3. Let S be the set of all 4 -digit natural numbers with the following properties:
(i) every digit of any element of S belongs to the set $\{0,1,3,5,7,9\}$,
(ii) every element of S is divisible by 5 , and
(iii) no element of S is divisible by 2 .

Then the number of elements in S is
(a) 180
(b) 216
(c) 360
(d) 250
4. If a teacher assigns homework on the nth day, the probability that she will assign homework on the $(n+1)$ th day is $\frac{1}{3}$. If she does not assign homework on the nth day, the probability that she will assign homework on the $(n+1)$ th day is $\frac{2}{3}$. If she assigned homework on a Monday then the probability that she will assign homework on the Thursday of the week is
(a) $\frac{1}{3}$
(b) $\frac{7}{27}$
(c) $\frac{13}{27}$
(d) $\frac{2}{3}$
5. The value of $\sin \frac{2 \pi}{23}+\sin \frac{4 \pi}{23}+\cdots+\sin \frac{42 \pi}{23}+\sin \frac{44 \pi}{23}$ is
(a) -1
(b) 0
(c) 1
(d) 2
6. Let $P=(a, b)$ be a point in the Euclidean plane, with a and b nonzero. For any point S on the x-axis, let T be the point of intersection of the line $P S$ with the y-axis. Let M be the midpoint of the segment $S T$. Then the locus of M, as S varies on the x-axis, is given by
(a) $x y=a b$
(b) $x y=\frac{a b}{4}$
(c) $x y=a y+b x$
(d) $2 x y=a y+b x$
7. Let f be a differentiable function on \mathbb{R} satisfying the conditions
(i) $f(x)=\int_{0}^{x}(f(t))^{\frac{1}{3}} d t$ for all $x \in \mathbb{R}$, and
(ii) $f(x)>0$ for all $x>0$.

Then the value of $f(3)$ is
(a) $2 \sqrt{2}$
(b) $3 \sqrt{3}$
(c) $\frac{1}{2}$
(d) $\frac{1}{3}$
8. Let $f(x)=\ln x-2023 x+2023$ for all $x \in(0, \infty)$. Then the number of points at which the graph of f cuts the x axis is
(a) 0
(b) 2
(c) 3
(d) 1
9. Let N be the number of integers n such that
(i) $n=2^{a} 3^{b} 5^{c}$ where a, b, c are non-negative integers ≤ 10, and
(ii) n is neither a square nor a cube of a natural number.

Then N is equal to
(a) 848
(b) 849
(c) 1051
(d) 1059
10. Let $A B C$ be a triangle and let a, b and c denote the lengths of the sides $B C$, $C A$ and $A B$ respectively. Let α and β be positive real numbers such that

$$
\alpha(\angle A)+\beta(\angle B)=(\alpha+\beta)(\angle C)
$$

Then
(a) $\alpha a+\beta b=(\alpha+\beta) c$
(b) $\alpha a+\beta b=(\alpha+\beta) c$ implies $a=b$
(c) $\alpha a+\beta b>(\alpha+\beta) c$
(d) $\alpha a+\beta b=(\alpha+\beta) c$ implies $\alpha a=\beta b$
11. For $a, b \in \mathbb{R}$, with $a>0$, let $N(a, b)$ denote the number of elements in the set $\{x \in \mathbb{R} \mid x+a \sin x=b\}$. Then
(a) $N(a, b)=1$ for all a, b.
(b) there does not exist any a such that $N(a, b)=1$ for all b.
(c) $N(a, b)$ is finite for all a, b.
(d) there exist a, b such that $N(a, b)$ is infinite.
12. Let N be the number of solutions of the equation

$$
x_{0}+2 x_{1}+2 x_{2}+2 x_{3}+2 x_{4}+x_{5}=6,
$$

with $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ and x_{5} taking non-negative integer values. Then
(a) $N<50$
(b) $50 \leq N<100$
(c) $100 \leq N<1000$
(d) $1000 \leq N$
13. For $a, b>0$ let $F(a, b)=\int_{a}^{b}|\sin 2 \pi x| d x$. Then
(a) $F(10,11)=2 F\left(0, \frac{1}{2}\right)$
(b) $F\left(\frac{41}{4}, \frac{43}{4}\right)=\frac{1}{2} F\left(\frac{1}{2}, 1\right)$
(c) $F\left(\frac{1}{8}, \frac{1}{4}\right)=F(1,2)$
(d) $F\left(\frac{41}{4}, \frac{43}{4}\right)=\frac{2}{3} F\left(0, \frac{3}{4}\right)$
14. Let $S=\{x, y, z\}$ and $f: S \rightarrow \mathbb{N}$ be a function. Let A be a subset of \mathbb{N} such that the following conditions are satisfied:
(i) if $f(x) \in A$ then $f(y) \in A$, and
(ii) if $f(z) \notin A$ then $f(y) \notin A$.

Then it follows that
(a) whenever $f(x) \in A, f(z) \in A$.
(b) whenever $f(x) \notin A, f(z) \notin A$.
(c) whenever $f(z) \in A, f(x) \in A$.
(d) whenever $f(z) \notin A, f(x) \notin A$.
15. Let \mathbf{a} and \mathbf{b} be non-zero vectors. Let S be the set of vectors \mathbf{v} such that $\mathbf{a} \times \mathbf{v}=\mathbf{b}$. Then
(a) there exists a positive real number r such that $\|\mathbf{v}\|<r$ for all $\mathbf{v} \in S$.
(b) S is non-empty if and only if $\mathbf{a} \cdot \mathbf{b}=0$.
(c) S is contained in a plane.
(d) if \mathbf{v}_{1} and \mathbf{v}_{2} are in S, then there exists $\lambda \in \mathbb{R}$ such that $\mathbf{v}_{1}-\mathbf{v}_{2}=\lambda \mathbf{a}$.
16. Let C_{1}, C_{2} and C_{3}, be three circles having the same radius r, which touch each other externally. Then
(a) for any circle C which is touched internally by C_{1} and C_{2}, C_{3} lies within C.
(b) there is no circle C touched internally by C_{1}, C_{2} and C_{3}.
(c) a circle C touched internally by C_{1}, C_{2} and C_{3} has radius $\left(1+\frac{2}{\sqrt{3}}\right) r$.
(d) the radius of any circle C touched internally by C_{1} and C_{2} is at least $2 r$.
17. Let $S=\{(a, b) \mid a, b \in \mathbb{Z}\}$. Let R be the equivalence relation on S defined by $(a, b) R(c, d)$ if $a^{2}+b^{2}=c^{2}+d^{2}$. For $(a, b) \in S$ let $F(a, b)$ denote the equivalence class $\{(c, d) \in S \mid(a, b) R(c, d)\}$ of (a, b). Then
(a) there exists $(a, b) \in S$ such that $F(a, b)$ has only one element.
(b) there exists $(a, b) \in S$ such that $F(a, b)$ has exactly 4 elements.
(c) there exists $(a, b) \in S$ such that $F(a, b)$ has exactly 6 elements.
(d) there exists $(a, b) \in S$ such that $F(a, b)$ has infinitely many elements.

