- 1. Let f be the function on \mathbb{R} defined by $f(x) = x^3 3x^2 + ax 1$, where $a \in \mathbb{R}$. Then the set of all possible values of a for which f is strictly increasing is
 - (a) $[3,\infty)$
 - (b) $(-\infty, 3]$
 - (c) [-3,0]
 - (d) [0,3]

2. If
$$\frac{1}{(1+i)^{2023}} = te^{i\theta}$$
, where $t \in \mathbb{R}$ and $0 \le \theta < 2\pi$, then the value of θ is
(a) $\frac{\pi}{4}$
(b) $\frac{3\pi}{4}$
(c) $\frac{5\pi}{4}$
(d) $\frac{7\pi}{4}$

3. Let S be the set of all 4-digit natural numbers with the following properties:

- (i) every digit of any element of S belongs to the set $\{0, 1, 3, 5, 7, 9\}$,
- (ii) every element of S is divisible by 5, and
- (iii) no element of S is divisible by 2.

Then the number of elements in S is

- (a) 180
- (b) 216
- (c) 360
- (d) 250

- 4. If a teacher assigns homework on the *n*th day, the probability that she will assign homework on the (n + 1)th day is $\frac{1}{3}$. If she does not assign homework on the *n*th day, the probability that she will assign homework on the (n + 1)th day is $\frac{2}{3}$. If she assigned homework on a Monday then the probability that she will assign homework on the Thursday of the week is
 - (a) $\frac{1}{3}$ (b) $\frac{7}{27}$ (c) $\frac{13}{27}$ (d) $\frac{2}{3}$
- 5. The value of $\sin \frac{2\pi}{23} + \sin \frac{4\pi}{23} + \dots + \sin \frac{42\pi}{23} + \sin \frac{44\pi}{23}$ is
 - (a) −1
 - (b) 0
 - (c) 1
 - (d) 2
- 6. Let P = (a, b) be a point in the Euclidean plane, with a and b nonzero. For any point S on the x-axis, let T be the point of intersection of the line PS with the y-axis. Let M be the midpoint of the segment ST. Then the locus of M, as S varies on the x-axis, is given by
 - (a) xy = ab

(b)
$$xy = \frac{ab}{4}$$

- (c) xy = ay + bx
- (d) 2xy = ay + bx

7. Let f be a differentiable function on \mathbb{R} satisfying the conditions

(i)
$$f(x) = \int_{0}^{x} (f(t))^{\frac{1}{3}} dt$$
 for all $x \in \mathbb{R}$, and
(ii) $f(x) > 0$ for all $x > 0$.

Then the value of f(3) is

- (a) $2\sqrt{2}$ (b) $3\sqrt{3}$ (c) $\frac{1}{2}$
- (d) $\frac{1}{3}$
- 8. Let $f(x) = \ln x 2023x + 2023$ for all $x \in (0, \infty)$. Then the number of points at which the graph of f cuts the x axis is
 - (a) 0
 - (b) 2
 - (c) 3
 - (d) 1
- 9. Let N be the number of integers n such that
 - (i) $n = 2^a 3^b 5^c$ where a, b, c are non-negative integers ≤ 10 , and
 - (ii) n is neither a square nor a cube of a natural number.

Then N is equal to

- (a) 848
- (b) 849
- (c) 1051
- (d) 1059

10. Let ABC be a triangle and let a, b and c denote the lengths of the sides BC, CA and AB respectively. Let α and β be positive real numbers such that

$$\alpha(\angle A) + \beta(\angle B) = (\alpha + \beta)(\angle C).$$

Then

- (a) $\alpha a + \beta b = (\alpha + \beta)c$
- (b) $\alpha a + \beta b = (\alpha + \beta)c$ implies a = b
- (c) $\alpha a + \beta b > (\alpha + \beta)c$
- (d) $\alpha a + \beta b = (\alpha + \beta)c$ implies $\alpha a = \beta b$
- 11. For $a, b \in \mathbb{R}$, with a > 0, let N(a, b) denote the number of elements in the set $\{x \in \mathbb{R} \mid x + a \sin x = b\}$. Then
 - (a) N(a,b) = 1 for all a, b.
 - (b) there does not exist any a such that N(a, b) = 1 for all b.
 - (c) N(a, b) is finite for all a, b.
 - (d) there exist a, b such that N(a, b) is infinite.
- 12. Let N be the number of solutions of the equation

$$x_0 + 2x_1 + 2x_2 + 2x_3 + 2x_4 + x_5 = 6,$$

with x_0, x_1, x_2, x_3, x_4 and x_5 taking non-negative integer values. Then

- (a) N < 50
- (b) $50 \le N < 100$
- (c) $100 \le N < 1000$
- (d) $1000 \le N$

13. For a, b > 0 let $F(a, b) = \int_{a}^{b} |\sin 2\pi x| dx$. Then (a) $F(10, 11) = 2F(0, \frac{1}{2})$

- (b) $F(\frac{41}{4}, \frac{43}{4}) = \frac{1}{2}F(\frac{1}{2}, 1)$
- $(3) = (4, 4) = 2^{-1}(2)^{-1}$
- (c) $F(\frac{1}{8}, \frac{1}{4}) = F(1, 2)$
- (d) $F(\frac{41}{4}, \frac{43}{4}) = \frac{2}{3}F(0, \frac{3}{4})$

- 14. Let $S = \{x, y, z\}$ and $f : S \to \mathbb{N}$ be a function. Let A be a subset of \mathbb{N} such that the following conditions are satisfied:
 - (i) if $f(x) \in A$ then $f(y) \in A$, and
 - (ii) if $f(z) \notin A$ then $f(y) \notin A$.

Then it follows that

- (a) whenever $f(x) \in A$, $f(z) \in A$.
- (b) whenever $f(x) \notin A$, $f(z) \notin A$.
- (c) whenever $f(z) \in A$, $f(x) \in A$.
- (d) whenever $f(z) \notin A$, $f(x) \notin A$.
- 15. Let **a** and **b** be non-zero vectors. Let S be the set of vectors **v** such that $\mathbf{a} \times \mathbf{v} = \mathbf{b}$. Then
 - (a) there exists a positive real number r such that $||\mathbf{v}|| < r$ for all $\mathbf{v} \in S$.
 - (b) S is non-empty if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.
 - (c) S is contained in a plane.
 - (d) if \mathbf{v}_1 and \mathbf{v}_2 are in S, then there exists $\lambda \in \mathbb{R}$ such that $\mathbf{v}_1 \mathbf{v}_2 = \lambda \mathbf{a}$.
- 16. Let C_1 , C_2 and C_3 , be three circles having the same radius r, which touch each other externally. Then
 - (a) for any circle C which is touched internally by C_1 and C_2 , C_3 lies within C.
 - (b) there is no circle C touched internally by C_1 , C_2 and C_3 .
 - (c) a circle C touched internally by C_1 , C_2 and C_3 has radius $\left(1 + \frac{2}{\sqrt{3}}\right)r$.
 - (d) the radius of any circle C touched internally by C_1 and C_2 is at least 2r.
- 17. Let $S = \{(a, b) \mid a, b \in \mathbb{Z}\}$. Let R be the equivalence relation on S defined by (a, b)R(c, d) if $a^2 + b^2 = c^2 + d^2$. For $(a, b) \in S$ let F(a, b) denote the equivalence class $\{(c, d) \in S \mid (a, b)R(c, d)\}$ of (a, b). Then
 - (a) there exists $(a, b) \in S$ such that F(a, b) has only one element.
 - (b) there exists $(a, b) \in S$ such that F(a, b) has exactly 4 elements.
 - (c) there exists $(a, b) \in S$ such that F(a, b) has exactly 6 elements.
 - (d) there exists $(a, b) \in S$ such that F(a, b) has infinitely many elements.