- 1. Let $g : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that g(x)g'(x) > 0 for all $x \in \mathbb{R}$. Then
 - (a) g is increasing.
 - (b) g is decreasing.
 - (c) |g| is increasing.
 - (d) |g| is decreasing.

2. The number of real roots of $f(x) = x^6 + x^3 - 1$ is

- (a) 0
- (b) 2
- (c) 4
- (d) 6
- 3. In a throw of a (biased single) dice, the probability of the outcome being a number n is $\frac{1}{4}$ if n is even, and $\frac{1}{12}$ if n is odd. If the dice is thrown twice, then the probability that the sum of the two outcomes is an even number is
 - (a) $\frac{3}{8}$ (b) $\frac{1}{2}$ (c) $\frac{5}{8}$
 - (d) $\frac{3}{4}$
- 4. Define $\operatorname{sgn}(x) = \begin{cases} 1, & \text{if } x > 0, \\ -1, & \text{if } x < 0, \\ 0, & \text{if } x = 0. \end{cases}$

Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = (x - \sqrt{5}) \operatorname{sgn}(x^2 - 5)$. Then the number of discontinuities of f is

- (a) 0
- (b) 1
- (c) 2
- (d) 3

- 5. Let S be the set of all natural numbers x such that
 - (i) $100 \le x \le 999$,
 - (ii) 0 appears at least once as a digit in the decimal expansion of x, and
 - (iii) the sum of the digits of x is 10.

Then the number of elements in S is

- (a) 18
- (b) 20
- (c) 27
- (d) 30
- 6. The horizontal line y = k intersects the parabola y = 2(x 4)(x 6) at points A and B. If the length of AB is 8, then the value of k is
 - (a) 30
 - (b) 10
 - (c) 20
 - (d) 8

7. Let
$$S(n) = \frac{1}{n^4} \sum_{l=1}^n (l+2)(l+4)(l+6)$$
. The value of $\lim_{n \to \infty} S(n)$ is
(a) $\frac{1}{6}$
(b) $\frac{1}{2}$
(c) $\frac{1}{4}$
(d) 1

8. Let α be a complex number such that $\alpha \neq 1$ and $\alpha^5 = 1$. Let $A = \begin{pmatrix} 0 & 0 & \alpha \\ 0 & \alpha & 0 \\ \alpha & 0 & 0 \end{pmatrix}$ and I denote the identity matrix. Then the value of $I + A + A^2 + A^3 + A^4$ is

$$\begin{array}{l} \text{(a)} & (1+\alpha^2+\alpha^4) \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} \\ \text{(b)} & \alpha(1+\alpha^2) \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} \\ \text{(c)} & (1+\alpha^2+\alpha^4) \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix} \\ \text{(d)} & (1+\alpha^2+\alpha^4) \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \end{array}$$

9. Let P and Q be the vertices of the parabolae $y = x^2 + bx + c$ and $y = -x^2 + dx + e$, respectively.

If P and Q are the points of intersection of the parabolae then the slope of the line through P and Q is

(a) $\frac{c+e}{2}$ (b) $\frac{c+d}{2}$ (c) $\frac{b+d}{2}$ (d) $\frac{b+e}{2}$ 10. Let ABC be a triangle with AC = 2048, AB = 512 and BC = 2000. Let P be a point on the segment AB such that AP = 1 and Q be a point on the segment AC such that AQ = 1024. Let R be the midpoint of PQ. Let Z be the point of intersection of AR and BC.

Then the length of ZC is

(a)	$\frac{2000}{256}$
(b)	$\frac{2000}{2000}$
(0)	257
(c)	$\frac{1000}{256}$
(d)	1000
	257

11. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(0) = 1 and

 $|f(x) - f(y)| \le |\sin\{(x - y)^2\}| \text{ for all } x, y \in \mathbb{R},$

and let g be the function defined by $g(x) = x^2 f(x^2)$ for all $x \in \mathbb{R}$. Then the value of g'(2) is

- (a) 2
- (b) 4
- (c) 6
- (d) 0

- 12. Let $n \geq 3$ be an integer. Let P_1, P_2, \ldots, P_{2n} be points in the plane, which are the vertices of a regular 2*n*-gon. The number of obtuse-angled triangles with vertices contained in the set $\{P_1, P_2, \ldots, P_{2n}\}$ is
 - (a) n(n-1)(n-2)(b) $\frac{n^2(n-1)(n-2)}{3}$ (c) $\frac{n(n-1)^2}{2}$ (d) 2n(2n-1)(2n-2)
- 13. If A, B, C are 3×3 matrices with entries in \mathbb{R} , satisfying the condition AB = AC, then
 - (a) the determinant of AB is 0.
 - (b) either A is the zero matrix or B = C.
 - (c) either B = C or A is not an invertible matrix.
 - (d) either A is the zero matrix or the determinant of B C is zero.
- 14. Let X, Y, Z be sets and $f: X \to Y$ and $g: Y \to Z$ be functions. Then
 - (a) $g \circ f$ being injective implies f injective.
 - (b) $g \circ f$ being surjective implies g surjective.
 - (c) $g \circ f$ being injective implies g injective.
 - (d) g being surjective implies $g \circ f$ surjective.
- 15. Let $f: (0,3) \cup (6,9) \to \mathbb{R}$ be a differentiable function such that $f'(x) = \frac{1}{2}$ for all $x \in (0,3) \cup (6,9)$. Then
 - (a) f is an increasing function.
 - (b) f is a one to one function.
 - (c) f(8) f(7) = f(2) f(1).
 - (d) there exists a number c in \mathbb{R} such that f(x+6) = f(x) + c for all $x \in (0,3)$.

- 16. Let A and B be two points on the parabola $y 2x^2 = 0$ and O be the origin (0,0). If
 - (a) OAB is an isosceles triangle then the y coordinates of A and B are equal.
 - (b) OAB is an equilateral triangle then the length of each side is $\sqrt{3}$.
 - (c) OAB is an isosceles triangle and the two equal sides are of length $\sqrt{3}$ then OAB is an equilateral triangle.
 - (d) OAB is an equilateral triangle then its altitude is $\sqrt{3}$.
- 17. Let $f : [0,1] \to \mathbb{R}$ be a continuous function and P be a polynomial of degree 4 with coefficients in \mathbb{R} . If P(f(x)) = 0 for all $x \in \mathbb{R}$, then
 - (a) f(x) = 0 for all $x \in \mathbb{R}$.
 - (b) f is a constant function.
 - (c) for all continuous functions g, there exists $x \in [0, 1]$ such that P(g(x)) = 0.
 - (d) P has at most two roots which do not belong to \mathbb{R} .