1. Let $g: \mathbb{R} \mapsto \mathbb{R}$ be a differentiable function such that $g(x) g^{\prime}(x)>0$ for all $x \in \mathbb{R}$. Then
(a) g is increasing.
(b) g is decreasing.
(c) $|g|$ is increasing.
(d) $|g|$ is decreasing.
2. The number of real roots of $f(x)=x^{6}+x^{3}-1$ is
(a) 0
(b) 2
(c) 4
(d) 6
3. In a throw of a (biased single) dice, the probability of the outcome being a number n is $\frac{1}{4}$ if n is even, and $\frac{1}{12}$ if n is odd. If the dice is thrown twice, then the probability that the sum of the two outcomes is an even number is
(a) $\frac{3}{8}$
(b) $\frac{1}{2}$
(c) $\frac{5}{8}$
(d) $\frac{3}{4}$
4. Define $\operatorname{sgn}(x)= \begin{cases}1, & \text { if } x>0, \\ -1, & \text { if } x<0, \\ 0, & \text { if } x=0 .\end{cases}$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=(x-\sqrt{5}) \operatorname{sgn}\left(x^{2}-5\right)$. Then the number of discontinuities of f is
(a) 0
(b) 1
(c) 2
(d) 3
5. Let S be the set of all natural numbers x such that
(i) $100 \leq x \leq 999$,
(ii) 0 appears at least once as a digit in the decimal expansion of x, and
(iii) the sum of the digits of x is 10 .

Then the number of elements in S is
(a) 18
(b) 20
(c) 27
(d) 30
6. The horizontal line $y=k$ intersects the parabola $y=2(x-4)(x-6)$ at points A and B. If the length of $A B$ is 8 , then the value of k is
(a) 30
(b) 10
(c) 20
(d) 8
7. Let $S(n)=\frac{1}{n^{4}} \sum_{l=1}^{n}(l+2)(l+4)(l+6)$. The value of $\lim _{n \rightarrow \infty} S(n)$ is
(a) $\frac{1}{6}$
(b) $\frac{1}{2}$
(c) $\frac{1}{4}$
(d) 1
8. Let α be a complex number such that $\alpha \neq 1$ and $\alpha^{5}=1$. Let $A=\left(\begin{array}{ccc}0 & 0 & \alpha \\ 0 & \alpha & 0 \\ \alpha & 0 & 0\end{array}\right)$ and I denote the identity matrix. Then the value of $I+A+A^{2}+A^{3}+A^{4}$ is
(a) $\left(1+\alpha^{2}+\alpha^{4}\right)\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1\end{array}\right)$
(b) $\alpha\left(1+\alpha^{2}\right)\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1\end{array}\right)$
(c) $\left(1+\alpha^{2}+\alpha^{4}\right)\left(\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1\end{array}\right)$
(d) $\left(1+\alpha^{2}+\alpha^{4}\right)\left(\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right)$
9. Let P and Q be the vertices of the parabolae $y=x^{2}+b x+c$ and $y=-x^{2}+d x+e$, respectively.

If P and Q are the points of intersection of the parabolae then the slope of the line through P and Q is
(a) $\frac{c+e}{2}$
(b) $\frac{c+d}{2}$
(c) $\frac{b+d}{2}$
(d) $\frac{b+e}{2}$
10. Let $A B C$ be a triangle with $A C=2048, A B=512$ and $B C=2000$. Let P be a point on the segment $A B$ such that $A P=1$ and Q be a point on the segment $A C$ such that $A Q=1024$. Let R be the midpoint of $P Q$. Let Z be the point of intersection of $A R$ and $B C$.

Then the length of $Z C$ is
(a) $\frac{2000}{256}$
(b) $\frac{2000}{257}$
(c) $\frac{1000}{256}$
(d) $\frac{1000}{257}$
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(0)=1$ and

$$
|f(x)-f(y)| \leq\left|\sin \left\{(x-y)^{2}\right\}\right| \text { for all } x, y \in \mathbb{R}
$$

and let g be the function defined by $g(x)=x^{2} f\left(x^{2}\right)$ for all $x \in \mathbb{R}$. Then the value of $g^{\prime}(2)$ is
(a) 2
(b) 4
(c) 6
(d) 0
12. Let $n \geq 3$ be an integer. Let $P_{1}, P_{2}, \ldots, P_{2 n}$ be points in the plane, which are the vertices of a regular $2 n$-gon. The number of obtuse-angled triangles with vertices contained in the set $\left\{P_{1}, P_{2}, \ldots, P_{2 n}\right\}$ is
(a) $n(n-1)(n-2)$
(b) $\frac{n^{2}(n-1)(n-2)}{3}$
(c) $\frac{n(n-1)^{2}}{2}$
(d) $2 n(2 n-1)(2 n-2)$
13. If A, B, C are 3×3 matrices with entries in \mathbb{R}, satisfying the condition $A B=A C$, then
(a) the determinant of $A B$ is 0 .
(b) either A is the zero matrix or $B=C$.
(c) either $B=C$ or A is not an invertible matrix.
(d) either A is the zero matrix or the determinant of $B-C$ is zero.
14. Let X, Y, Z be sets and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Then
(a) $g \circ f$ being injective implies f injective.
(b) $g \circ f$ being surjective implies g surjective.
(c) $g \circ f$ being injective implies g injective.
(d) g being surjective implies $g \circ f$ surjective.
15. Let $f:(0,3) \cup(6,9) \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(x)=\frac{1}{2}$ for all $x \in(0,3) \cup(6,9)$. Then
(a) f is an increasing function.
(b) f is a one to one function.
(c) $f(8)-f(7)=f(2)-f(1)$.
(d) there exists a number c in \mathbb{R} such that $f(x+6)=f(x)+c$ for all $x \in(0,3)$.
16. Let A and B be two points on the parabola $y-2 x^{2}=0$ and O be the origin $(0,0)$. If
(a) $O A B$ is an isosceles triangle then the y coordinates of A and B are equal.
(b) $O A B$ is an equilateral triangle then the length of each side is $\sqrt{3}$.
(c) $O A B$ is an isosceles triangle and the two equal sides are of length $\sqrt{3}$ then $O A B$ is an equilateral triangle.
(d) $O A B$ is an equilateral triangle then its altitude is $\sqrt{3}$.
17. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function and P be a polynomial of degree 4 with coefficients in \mathbb{R}. If $P(f(x))=0$ for all $x \in \mathbb{R}$, then
(a) $f(x)=0$ for all $x \in \mathbb{R}$.
(b) f is a constant function.
(c) for all continuous functions g, there exists $x \in[0,1]$ such that $P(g(x))=0$.
(d) P has at most two roots which do not belong to \mathbb{R}.

